DEVELOPING INSPIRED QUESTIONS

PURPOSE
This tool is intended as an introduction to the art of developing inspired questions. Questioning is one of the primary skills in teaching; it opens the mental and emotional space in which learning can occur. Questions allow learners to activate their thinking and to engage in Teach One Another activities.

DESCRIPTION
The process of developing effective questions includes:
1. Knowing what you hope to accomplish
2. Precise and succinct articulation
3. Understanding the kinds of questions
4. Sequencing the questions

Knowing your outcomes
Asking good questions might seem an improvisational art and a spontaneous part of classroom discussion. It isn’t. Rather, effective instructors have a clear learning objective in mind and use questions strategically to accomplish that end. They identify key questions ahead of time and even write them out to insure clarity. They target questions at key understandings or common student misconceptions.

Precise and Succinct Articulation
It’s easy to try and salvage a poorly worded question by restating it again, and again, and again. This common instructional malady is called Run-On-Questioning and only serves to confuse students. One or two well-planned and succinctly-articulated questions are more powerful during a class than a slew of off-the-cuff inquiries. Repeat a question slowly while emphasizing important words, rather than re-articulating “from a different angle.” Prepare ahead of time by writing key questions into your instructional plan.

Kinds of Questions
Different questions elicit different kinds of inquiry and produce different types understanding. Attempts to categorization this diversity are called taxonomies, and an instructor would benefit greatly to have studied several of them closely. Several examples will be discussed later in this tool.

Sequencing
Although some taxonomies guide sequencing, many instructors still find sequencing difficult. When the taxonomies aren’t enough:

- **Look to the students.** Often, students will have a very clear idea of where they need to go next to flesh out their understanding.
- **Look to the outcomes.** Outcomes give you the end goal, the port of arrival. Even if a sailboat weaves back and forth according to how the wind blows, knowing the destination keeps it on track. Follow-up questions might change with the flow of the discussion, but keeping an eye on outcomes will guide learning appropriately.
- **Look to path dependencies.** Is there knowledge that must build on prior knowledge? A logical progression from simple to complex?

EXAMPLE
One helpful taxonomy looks at learning as an iterative process related to three aspects of the student: Knowing, Becoming, and Doing.

Know

Become

Do

One begins with a knowledge question (*Can you see the paradox of a unionized profession?*). Next, you probe the student reaction or feelings about the issue, how they personalize it or how it effects their becoming (*If you become a public school teacher, do you think you’ll be generally perceived as a professional, or as labor and a technician? How do you feel about that?*).

All learning has this affective, personal component. To ignore this reduces the student’s ability for retention because the knowledge is only stored in their short-term memory and not integrated into their life. If the student is open, and the learning matters to them (becoming), further questions could next explore consequences and causalities through a simulated or a real action (doing) (*So let’s say you...*)

http://www.byui.edu/learning-and-teaching/instructional-tools

©Copyright 2016 BYU–Idaho

08/18/16
decide to not join the union...). This helps the students invest further in their learning and opens them [becoming] (Why would that be so bad? What makes you react so strongly to the idea?) to accept further ideas and information [knowing] (Well, what might be an alternative perspective?).

This taxonomy is powerful because it reminds us that from a gospel perspective, all knowing and all doing are part of the process of becoming, which is hit twice as often in this learning cycle.

It’s also common to form questions around level of understanding. For example, Bloom’s taxonomy would indicate knowledge-type questions (Can you name...?) should be followed with comprehension type (What influence did religion play in his discovery...?), then application type (Are scientist today different in that they...?) and so forth.

However, if your preparation activities are of a nature to build knowledge and comprehension, you might focus in-class discussion questions exclusively on higher-order learning like application and synthesis (So given what we know, what might happen if...?).

Some taxonomies fit certain disciplines better, while others are perfect for the style or goals of a given instructor. Some are simply lists, while others imply a sequence or a cycle. Some focus on the kinds or levels of learning the question is meant to induce, while others focus on the student domains the questions are meant to activate. With so many to choose from, you should be able to find a model that can be committed to memory and used as a guide for articulating questions. A few examples:

1. The first example is Bloom’s taxonomy, one of the many hierarchical models. It assumes that as students reach understanding at one level, they are led through questioning to understand at the next, more complex level of knowing.

2. The second example assumes that knowledge of a subject requires understanding of both its details (convergent), as well as its context and relationships (divergent) and that learning is a process of cycling between the two.

3. The third example is particularly useful in getting student to question each other at a deeper level. Often called Mutual Peer Tutoring, it starts simply with the instructor posing an initial question. Students then take turns asking each other questions designed to pull as much understanding from their peer as possible, followed by pushing questions, questions which pose a “what if...” situation or nudge the peer in a given direction by adding new information.

<table>
<thead>
<tr>
<th>Knowledge</th>
<th>Comprehension</th>
<th>Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis</td>
<td>Synthesis</td>
<td>Evaluation</td>
</tr>
<tr>
<td>Divergent</td>
<td>Convergent</td>
<td>Prompting (pulling)</td>
</tr>
<tr>
<td>Initial question</td>
<td>Probing</td>
<td></td>
</tr>
</tbody>
</table>

TIPS

- **Study a model.** There are many ways to think about levels and ways of knowing. Find a model that works well for you and learn it until its use becomes second nature in guiding your thoughts.

- **Use “W” questions.** Who, What, Which, Where, When are often used to launch a discussion before pursuing the tougher questions.

PITFALLS

- **Frequency doesn’t help.** Increasing the frequency of classroom questions does not enhance the learning of more complex material. Some researchers have found no relationship; others have found a negative relationship. So choose a few questions wisely.

KEY ARTICLES

OTHER RESOURCES